JOURNAL OF COMPUTATIONAE, PHYSICS TS, 524=5209 (1994)

Positivity Preserving in Difference Schemes for the 2D Diffusive
Transport of Atmospheric Gases

MeELITrA FIEBIG-WITTMAACK®

epartamento de Matemdtica, Focultad de Ciencias, Universidad de La Serena, Cusilla 599, La Serena, Chile

AMD

WOLFGANG BORSCH-SUPAN

Fachbercich Mathemarik, Joh, Gutenberg-Universitil, Postfach, 55099 Muainz, Germany

Received June 15, 1992 revised June 13, 1994

Madelling the transport of tracer gases in the lower stratosphere
leads to a diffusivity matrix with nen-zero olf-diagonal elements,
This in turn impliss non-positivity of conventiona! difference meth-
ads. Computations for regions with sharp gradients of mixing ratios
therefore may show unrealistic small, even negative values. A modi-
fication of the difference scheme is proposed which is able to re-
maove this feature and, in addition, to improve the accuracy of the

calculations. © 1994 Academic Press, inc.

1. INTRODUCTION

In atmospheric models incorporating chemical reactions the
global behavior of tacers is often studied by analyzing a two-
dimensional zonally averaged model including the troposphere
and the stratosphere (i.e., the two lower layers of the aimo-
sphere up to about 60 km) and treating a very detailed
chemistry (approximately 70 species and 100 reactions, e.g.,
sec |3-5, 7, 9]). Zonal and monthly time averaging leads
to linear transport equations with important eddy diffusion
terms [7]. The diffusion is not only anisotropic, but in the
stratosphere the diffusivity matrix also has non-zero off-
diggonal elements due 1o the inclination of the main exchange
direction (isolines of potential temperature) against the hori-
zontal.

In mathematical terms the model is described by a parabolic
system of dilferential equations given by
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where X; is the concentration (number of molecules per unit
of volume) of the tracer or tracer family numbered by i, M
is the air concentration, p; = X;/M is the mixing ratio, ¢
is the latitude, z is the altitude, ¢ is the time, « is the Earth’s
radius, dv = ade, F, is the meridional density, F, is the
vertical flux density, v is the averaged meridional advection
velocity, w is the averaged vertical advection velocity, K,,,
K., and K_ are eddy diffusion coefficients, F; is the number
of molecules of the tracer produced by chemical processes
{per unit time and volume) and L; is the portion of the tracer
destroyed by chemical processes (per unit time). P; and L,
may depend on the concentrations, also of other tracers; they
also may depend on space and time, e.g., via the sun’s
position in the sky. The other coefficients are space- and
time-dependent.
It is well known that the condition

Kfl < K}\'KZZ

implies positive definitness and positivity preserving of the
diffusional terms (see [6]). This condition is always satisfied
in the model; also the advective and the chemical terms preserve
positivity of the solution.

Several investigations in air chemistry (e.g. |3, 7, 12]) solve
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Eqgs. (1) numerically by applying a splitting method (as de-
scribed in [11]), which consists in the alternate calculation of
changes due to transport and to chemisiry within one time step.
Whereas for chemistry specially tailored methods are applied;
the transport step uses Euler's forward method as time
discretization and centered difference methods with staggered
grids for concentrations and fluxes as spatial discretization.
This rather simple approach is possible since, within the
time step of 2h, changes by transport are small and the
diffusion terms ensure numerical stability for mesh sizes of
10° in latitude and approximately 2 km in altitude, even in
the presence of moderate advection. The scheme is still in
use, since it is economic with respect to computer time
and therefore suitable for investigations with many varying
parameters which allow the study of different scenarios (sce
5, 9D

Whereas most results produced by this implemented model
are satisfactory, under some special circumstances, very low
or even negative values of the concentrations of some species
show up in areas with sharp gradients in a mixing ratio, We
call this unrealistic phenomenon ‘‘numerical holes.”” Since the
chemistry procedure is constructed in such a way that changes
into negative values cannnt occur, the transport routine must
be responsible for the violation of positivity.

Positivity preserving and other properties of numerical meth-
ods for pure advection have been extensively discussed in the
recent literature (see {15, 16, 2]). We found out, however, that
this kind of numerical holes is due to the diffusive part of the
equation, in particular to the off-diagonal coefficients in the
diffusivity matrix. In fact, such a type of phenomenon was
already described by Kershaw [10] with diffusion in Lagran-
gian coordinates, and by Pert [14} with diffusion perpendicular
to the gradient in magnetic fields, and also with diffusion
in non-orthogonal geometry. Tn [14] the appearance of nega-
tive values is prevented by applying an antidiffusive flux
chosen to preserve a monotonicity constraint in the manner
of Boris and Book [1]. This, however, reduces the order of
accuracy of the implicit scheme. Instead, we propose a
modification of the explicit scheme which retains spatial
second-order consistency and regains positivity, although the
latter under certain conditions only, similar to the method
suggested by Gorenfio 18] with the Fokker—Planck equation.
As long as advection is not too large, the simple scheme
adopted for the advective part does not destroy positivity
preserving for the whole scheme. Hence, from this point of
view, it is not necessary to introduce the more sophisticated
methods for advection with our modified diffusion scheme.
But it is evident that such a combination is possible, at least
on the basis of a “‘splitting’’ treatment,

Qur modification is easily implementable within the frame-
work of existing box model routines {4, 5, 7, 9], without notably
increasing the computing time. It eliminated the appearance of
unrealistic values and even diminished the local error in some
important model situations.
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2. STUDY OF A SIMPLIFIED CASE

In order to better understand the essential aspects of the hole
problem, we consider a simplified model for just one tracer.
We presume that the appearance of the hole is not directly
linked to the rapid changes in diffusivity at the tropopause (i.e.,
the lower boundary of the stratosphere), nor to the advection.
Thus, we take cos ¢, M, v, w, and the eddy diffusion coefficients
K, K., and K. as constants, using cartesian coordinates y =
ag and z. Equation (1) then becomes

af. 4
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and the net source term

8§ = —ku, « 4 given constant,

describes a very simplified chemistry. We consider a rectangu-
lar region representing a neighborhood of the hole and impose
as boundary conditions purely vertical flux (i.e., f, = 0) at the
lateral boundaries, given vertical flux f; at the upper boundary,
and a Newton’s type boundary condition at the lower boundary
{ie. f. + vu = {, with a positive constant v, suitably chosen
to prevent backflow from below).

All terms are discretized as in the original model (7] (see
description in the Introduction). In order to maintain the accu-
racy order for the boundary conditions we intreduce artificial
outer points. For the simplified discrete model additional corner
conditions are needed also. We use combinations of the flux
conditions from the adjacent edges. In order to satisfy the
discrete boundary conditions, for every time step, after calculat-
ing the new inner values of u by an Euler’s forward step we
must solve a linear algebraic system of equations of essentially
tridiagonal structure for the outer point values of .

For the sake of simplicity we first restrict ourselves to the
purely diffusive part of the time evolution operator without
boundary conditions. We represent the corresponding discreti-
zation operator € which generates the g distribution of the
inner points of our rectangular region after a time step from
the distribution before that step (see [13]) by

G(Ar, Ay, A7) = | + At

with the classical scheme:
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with
K. =K, J(AyY, K.= KAz K, =K. /(AyAz).

Typical values of the diffusion coefficients in the neighbor-
hood of the ‘“‘hole’” are

K, =24 X 10"cm¥s, K,=—13X 10/ cms,

K.== 1.1 X 10* cm¥s

(see [4, 7]).

In order to have simpler values to work with we renormalize
the space coordinates such that the mesh spacing becomes
Ay = Az = ! in the new coordinates. Simultanecusly we
renormalize the time scale such that the diffusion coefficients
become of order 1; using a time unit of ~400h = 1.44 X 10%s,
this leads to the renormalized values of diffusion coefficients

K,=3 K,=-1 K. =

ed

4

b=

which we select as our reference model values. The stability
condition is :

At[K HAYY + K Az =%

{see [13]). With the time step of the original model renormalized
to Ar = 0.005 and space steps Ay = Az = 1, we are far inside
the stability limits. For calculations near a stationary case a
larger time step (e.g., At = 0.1) is possible.

We define a scheme to be positive (or positivity preserving),
if any nonnegative distribution gives rise to a nonnegative
distribution after one time step. If the diagonal diffusion coeffi-
cient K., # 0, then it follows from (3) that the scheme is
not positive in this sense. Certain positive distributions with
relatively sharp gradients (hence, considerable differences be-
tween neighboring mesh points) may cause negative values
afterwards. We want to modify the scheme so that it changes
to a positive one. It is easily seen, e.g., by derivation with
Taylor’s expansion, that consistent nine-point-formulae allow
for some freedom even if accuracy order 2 is required (see Eq.
{10} below, also [8], where this idea of generating a positive
scheme is already applied to a different difference scheme).
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We illustrate the procedure for f,; this flux density is given for
the middle of the right or left boundary of a mesh-cell by the
following ‘‘difference-star’’ (i.e., coefficient scheme):
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The first term corresponds to the classical discretization,
whereas the second one constitutes the freedom left by the
conditions of accuracy and is physically artificial with an arbi-
trarily valued factor p, which we also write pif/Az. We use the
factor to obtain non-negative coefficients for the diagonal values
of the difference star (3), for example, by taking

K.l

3
n= .

’ 4

Accuracy of order 2 is retatned by this modification: Expressing
the additional term by central differences and, in turn, differ-
ences by derivatives, one obtains

5,6 pF
Az :

2@

dy a7

+ higher order terms,

which is of second order if pf is fixed independent of Ay and
Az. We proceed similarly for the vertical flux density f;, working
with an arbitrarily chosen factor p, = p#/Ay. In this way, for
{3) we acquire an additional term

I -2 1
pl-2 4 -2
-2 1

with p = p/Ay + p/Az = (p¥ + p¥)/Ay Az. We do not know
of any physical interpretation of this artificial term which corre-
sponds to the differential operator a%ay’ dz° multiplied by
(p¥ + pF) Ay Az, hence going to zero if the mesh-width van-
ishes.

If we want to get all the coefficients non-negative, p must
satisfy the conditions

K| = 2p = min{k,,. K..} (6)
with

1+ AH{~2K,, — 2K.. + 4p) = 0. (7
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The latter is valid for every stable scheme if p = 0. However.
the first two can be satisfled simultaneously only when the
diagonal diffusion coefficient X,. is sufficiently small: the ma-
trix of the transformed diffusion coefficients,

B

i
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has to satisfy
|E\'z| = E\j" IE)‘:I = E;zu (S)

which almost correspond to the conditions of weak diagonal
dominance in {8] and which we shortly call *‘conditions of
diagonal dominance.”” These conditions need not be met, even
for a positive definite matrix of diffusion coefficients, i.e., with
K.>0, K.>0, K,K.>KZ,
as can be seen by our reference example (4). Observer, however,
that in this case the condition (8) can be achieved by a suitable
change in the ratio of the spatial stepsizes. With Ay = 1, § =
Az = 4 we obtain

E.\'.\' - 3’ 2= |Ey:| = 3’ 2= ‘E ’ %

and

cafro

< |KJ/K.= 1.

Our experience has shown that, even if the diagonal domi-
nance condition (8) is violated and the step sizes are not
changed, in many cases the introduction of such an additional
p-term is useful, e.g., with 2p = B|K,|, 0 < © = 1, negative
values of the solutions disappear.

Our considerations may be extended to include constant ad-
vection. We then have additional terms

in (3), where T = v/Ay, w = w/Az, and the condition (6) is to
be replaced by
K| = 2p = min{K,, — 3|0}, K.. — §[w]} )
which further restricts the magnitude of the off-diagonal diffu-
sion coetficient.
Besides the statement on the order of accuracy we cannot
give details on the influence of the p-term on the discretization
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error with general u distributions. However, with some expo-
nential distributions which are important for our problem, we
are able to show that the discretization error is even diminished
by introducing the p-term.

Let us denote the right-hand side of Eq. (2) by G and its
discretization by D, both calculated at the center of a mesh-cell.
We define the local discretization error of the spatial operator by
R := D — G. By Taylor’s expansion we then obtain

_g @ GRS
R_K-"-“[ T KT

g 2 o4
b | B Fp (A2
L3 6‘y362 3 adyaz’

4
o[22 0 ]

where our additional p-term is given by the third line. Let us
consider an exponential distribution w = u, exp{By + vz} with
purely vertical diffusion flux. With « := K, /K,, we obtain
K, := K.. — a’K,, > 0 because of the positive definiteness of
the diffusion coefficient matrix. One has K; <€ K, in the lower
stratosphere, particularly near our observed ‘‘numerical hole.”’
Purely vertical diffusion f, = O requires

KB + ayp =

By substituting in (10) and neglecting higher order terms, after
some calculations we obtain

R=—y'K, {—(Az— lee] Ay + (1 — @)i of Ay Az }

K(Az?
ty 2(121) ” [u(AyYe? — w(Az)].

We compare the factor in braces for the modified scheme with
& = 1 10 the classical scheme (® = 0). Considering the signs
within this factor, we see that it always is reduced by a certain
amount. From typical values of diffusion coefficients [4, 7] we
find that near the numerical hole we have, after scaling, & =
—1% approximately, For Ay = Az = 1 the factor in braces is
then reduced to £ of its classical value. Similarly, with Ay =
1 and Az = %, even a reduction to zero occurs.
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FIG. 1. Partof a vertical cross section of normalized solution of problem
2). for K, =3, K, = -1, K, =035,y = 04, x = 0.16, withowt advection
(ie.v =w=10),7 =098, vr=0.163 4 = 1, calculated by three different
methods: wy: Ay = Az = 1. p=p, =0 u: Ay =Az=1,p = p = 0167,
Ay = LAz =3, p=p. = 0.

In Figs. 1 and 2 we show typical examples for numerical
solutions in stationary cases, represented by a suitably normal-
ized mixing ratio u along parts of a vertical line y = y4 in the
middle of the model rectangular domain of width 5 and height
8 (corresponding to 50° meridional and 16 km vertical side
lengths; the picture is restricted to the interesting part of the
line, thus avoiding values of large magnitude outside). One
sees that negative values showing up in the standard u, approxi-
mation (i.e., Ay = Az = 1) disappear, if an additional p-term
is introduced in the «, approximation. The negative values also
disappear for u, if a more accurate discretization is chosen
(with Ay = 1, Az = %), however, at the expense of higher
computational costs. The stationary state is achieved by follow-
ing the solution until a sufficiently large time.

3. APPLICATION TO THE GENERAL CASE

In the case of the complete system (1) with variable coeffi-
cients and a large number of tracer species, the diffusion part
of the flux density F, discretization is also given by the two-
term sum in (5) applied to the mixing ratio and multiplied by
the air concentration M (the coefficients including p, being
taken at the midpoints of the lateral cell-boundaries). The advec-
tive part with the difference star

0 0
P
2 2
00

is added, using the arithmetic mean of mixing ratios in adjacent
cells. In a similar way the vertical flux density is treated at the
midpoints of upper and lower cell-boundaries. Observe that in
combining the four flux approximations at the cell-boundaries
into the discrete divergence operator one uses coefficients at
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different points which, in general, are not equal. Although,
the diagonal coefficients of the nine-point star can be made
nonnegative by choosing

1

P == Kv:
YT 4

1
—_— =
Az

K,
s = 4

Ay

at the midpoints of each cell-boundary. On the other hand,
for the axis-parallel coefficients diagonal dominance of the
transformed diffusion coefficients matrix, even without advec-
tion terms, is no longer sufficient for positivity as in the constant
coefficients case; this is also stated in [8], although there a
different discretization is applied. As in [8], strict diagonal
dominance (i.e., |K,.| < min{K,,, K..} is sufficient for positivity
if the step sizes are sufficiently small and the coefficients are
continuous.

Since the discrete modei from (7] is implemented with fixed
step sizes and diagonal dominance is violated in some regions,
particularly near the “*hole,”” full positivity cannot be achieved
by introducing our additional terms. Despite this we modified
the program by cur method with

—el
B :4

K.
Ay

]

1‘5{2

=8,—
P; _\4 AZ

where &, and ®, are chosen suitably from the interval (0, 1].

Several calculations have been carried out with the full sys-
tem (1) and detailed chemistry as in [7], with and without our
modification. One example with @, = €, = | is shown in Fig.
3. In all cases we have obtamed positive distributions when
choosing ®, = @, = [. It turns out that our p-scheme acts
specifically on the hole region of the CIO,-family and has
almost no influence in the other regions and on the other chemi-
cal families which present smooth gradients.

It is particularly recommended to apply this modified scheme

4000 u (y4) Uy

) .
3000
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2000 1 2
10001
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FIG. 2. Part of a vertical cross section of normalized solution of problem
(2}, for K, = 3, K, = =1, K. = 0.5, k = 0.08, with vertical advection v =
0, w = 0.083, y = 0.985, v = 0.081, u, = |, calculated by three diffcrent
methods: w: &y = Az =1, p,=p, = 0,1 Ay = Az = |, p, = p. = 0417,
u; Ay = |,Az=§,p,=p:=0.
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exp: -13 CIOX at 35°

mixing ratio

4
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FIG.3. Weshow part of the cross section at 35° N latitude for the calculated
salution of (1}, for the CIO-family in north winter for 10° steps in latitude,
approximately 2-km Steps in altitude (the first five steps are 3 km), after
catculation for | year in steps of 2 h, whereby: $ip, = p. = 0, #: p, = |K, |/
(4A2), p. = |K, [((44y),

if diffusional transport and rapid chemical destruction of a
family of species leads to sharp gradients in the corresponding
mixing ratio in an area where diagonal diffusion is present.
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